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Brent's Theorem 

§  Assumption when formulating parallel algorithms: we have 
arbitrarily many processors 

§  E.g., O(n) many processors for input of size n 

§  Kernel launch even reflects that! 

-  Often, we run as many threads as there are input elements 

-  I.e., CUDA/GPU provide us with this (nice) abstraction 

§  Real hardware: only has fixed number p of processors 

§  E.g., on current GPUs: p ≈ 200–2000 (depending on viewpoint) 

§  Question: how fast can an implementation of a massively parallel 
algorithm really be? 
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§  Assumptions for Brent's theorem: PRAM model 

§  No explicit synchronization needed 

§ Memory access = free 

§  Brent's Theorem: 
Given a massively parallel algorithm A; let D(n) = its depth (i.e., 
parallel time complexity), and W(n) = its work complexity. 
Then, A can be run on a p-processor PRAM in time  
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§  Proof: 

§  For each iteration step i, 1 ≤ i ≤ D(n), let Wi(n) = number of operations 
in that step 

§  Distribute those operations on p processors: 

-  Groups of              operations in parallel on the p processors 

-  Takes               time steps on the PRAM 

§ Overall : 
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Application of Brent's Theorem to our Optimization of Prefix-Sum 

§  Assume that the optimized version loads f  floats into local registers 

§  Work complexity: 

§ Without optimization: 

§ With optimization:  

§  Depth complexity: 

§ Without optimization:  

§ With optimization: 

§  If f = 2, then W2 = W1 and D2 = D1, i.e., we gain nothing 

§  If f > 2, speedup of version 2 (opt.) over version 1 (original): 
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Other Consequences of Brent's Theorem 

§  Obviously,  

§  In the sequential world, time = work:  

§  In the parallel world: 

§  Our speedup is  

§  Assume,  

i.e., our parallel algorithm would do asymptotically more work 

§  Then,  

because, on real hardware,  p  is bounded 

§  This is the reason why we want work-efficient parallel algorithms! 

Speedup(n)  p
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TP(n) =
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p + D(n)
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! 0 as n ! 1
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§  Now, look at work-efficient parallel algorithms, i.e. 

§  Then, 

§  In this situation, we will achieve the optimal speedup of p, 
so long as 

§  Consequence: given two work-efficient parallel algorithms, the 
one with the smaller depth complexity is better, because we can 
run it on hardware with more processors (cores) and still obtain a 
speedup of p over the sequential algorithm (in theory). 
We say this algorithm scales better. 

WP(n) 2 ⇥(WS(n) )

Speedup(n) =
W (n)

W (n)
p + D(n)

=
pW (n)

W (n) + pD(n)

p 2 O
�W (n)

D(n)

�



G. Zachmann 28 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS 

Limitations of Brent's Theorem 

§  Brent's theorem is based on the PRAM model 

§  That model makes a number of unrealistic assumption: 

§ Memory access has zero latency 

§ Memory bandwidth is infinite 

§  No synchronization among processors (threads) is necessary 

§  Arithmetic operations cost unit time 

§  With current hardware, rather the opposite is realistic 
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Radix Sort, Based on the Split Operation 

§  The split operation: rearrange elements according to a flag 

§  Note: split maintains order within each group! (i.e., it is stable) 

§  Radix sort (massively parallel): 
 
 
 
where split(i,a) rearranges a by moving all keys that have 
bit i = 0 to the bottom, all keys that have bit i = 1 to the top 
(lowest bit = bit no. 0) 

§  Reminder: stability of split  is essential! 

1 1 1 0 0 0 0 0 

0 1 0 0 1 0 0 1 

radix_sort( array a, int len ): 
  for i = 0...n-1:  // important: go from low to high bit! 
    split(i, a)     // split a, based on bit i of keys 

Flags. 
There could be  
payload data, too 
(omitted here) 
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Algorithm for the Split Operation 

§  Split's job: 

§  Determine new index for each element 

§  Then perform the permutation 

§  Algorithm (by way of an example): 

§  Consider lowest bit of the keys 

1.  Compute "0"-scan (exclusive): 
fi = # "0"s in (a0, …, ai-1) 

2.  Set F = total number of "0"s 

3.  If ai = 0 → new pos. d = fi 

4.  If ai = 1 → new pos. d = F + (i – fi) 

-  Because  i – fi = # "1"s to the left of i 

100 111 010 110 001 101 001 000 

0 1 2 3 4 5 6 7 

a: 

i: 

=

(
fn�1 + 1 an�1 = 0

fn�1 an�1 = 1

0 1 1 2 3 3 3 3 f: 

4+(1-1) 4+(4-3) 4+(5-3) 4+(6-3) dfor "1"s: 

0 1 2 3 dfor "0"s: 

F=4 

0 4 1 2 5 6 7 3 d: 

4 7 2 6 1 5 1 0 

0 1 2 3 4 5 6 7 

a: 

i: 

4 2 6 0 7 1 5 1 a': 
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§  A conceptual algorithm for the "0"-scan: 

§  Extract the relevant bit  
(conceptually only) 

§  Invert the bit  

§  Compute regular scan  
with +-operation 

§  In a real implementation, you would, of course, implement this 
as a native "0"-scan routine! 

100 111 010 110 001 101 001 000 a: 

1 0 1 1 0 0 0 1 a': 

0 1 1 2 3 3 3 3 f: 


