
G. Zachmann 22 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Brent's Theorem

§  Assumption when formulating parallel algorithms: we have
arbitrarily many processors

§  E.g., O(n) many processors for input of size n

§  Kernel launch even reflects that!

-  Often, we run as many threads as there are input elements

-  I.e., CUDA/GPU provide us with this (nice) abstraction

§  Real hardware: only has fixed number p of processors

§  E.g., on current GPUs: p ≈ 200–2000 (depending on viewpoint)

§  Question: how fast can an implementation of a massively parallel
algorithm really be?

G. Zachmann 23 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

§  Assumptions for Brent's theorem: PRAM model

§  No explicit synchronization needed

§ Memory access = free

§  Brent's Theorem:
Given a massively parallel algorithm A; let D(n) = its depth (i.e.,
parallel time complexity), and W(n) = its work complexity.
Then, A can be run on a p-processor PRAM in time

(Note the "≤")

T (n, p)
�
W (n)

p

⌫
+ D(n)

G. Zachmann 24 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

§  Proof:

§  For each iteration step i, 1 ≤ i ≤ D(n), let Wi(n) = number of operations
in that step

§  Distribute those operations on p processors:

-  Groups of operations in parallel on the p processors

-  Takes time steps on the PRAM

§ Overall :

T (n, p) =
D(n)X

i=1

⇠
Wi(n)

p

⇡

D(n)X

i=1

��Wi(n)

p

⌫
+ 1

�

�
W (n)

p

⌫
+ D(n)

⇠
Wi(n)

p

⇡

⇠
Wi(n)

p

⇡

G. Zachmann 25 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Application of Brent's Theorem to our Optimization of Prefix-Sum

§  Assume that the optimized version loads f floats into local registers

§  Work complexity:

§ Without optimization:

§ With optimization:

§  Depth complexity:

§ Without optimization:

§ With optimization:

§  If f = 2, then W2 = W1 and D2 = D1, i.e., we gain nothing

§  If f > 2, speedup of version 2 (opt.) over version 1 (original):

D1(n) = 2 log(n)

W1(n) = 2n

W2(n) = 2n
f +

n
f ·f = n

�
1 + 2

f

�

D2(n) = 2 log(

n
f) + f = 2 log n � 2 log f + f

Speedup(n) =
T2(n)

T1(n)
=

W1(n)
p + D1(n)

W2(n)
p + D2(n)

⇡
2n
p

n
p

�
1 + 2

f

� =
2f

f + 2

G. Zachmann 26 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Other Consequences of Brent's Theorem

§  Obviously,

§  In the sequential world, time = work:

§  In the parallel world:

§  Our speedup is

§  Assume,

i.e., our parallel algorithm would do asymptotically more work

§  Then,

because, on real hardware, p is bounded

§  This is the reason why we want work-efficient parallel algorithms!

Speedup(n) p

TS(n) = WS(n)

TP(n) =
WP (n)

p + D(n)

WP(n) 2 ⌦(WS(n))

Speedup(n) = TS (n)
TP (n)

= WS (n)
WP (n)

p +D(n)

Speedup(n) =
WS(n)

⌦(WS(n)) + D(n)
! 0 as n ! 1

G. Zachmann 27 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

§  Now, look at work-efficient parallel algorithms, i.e.

§  Then,

§  In this situation, we will achieve the optimal speedup of p,
so long as

§  Consequence: given two work-efficient parallel algorithms, the
one with the smaller depth complexity is better, because we can
run it on hardware with more processors (cores) and still obtain a
speedup of p over the sequential algorithm (in theory).
We say this algorithm scales better.

WP(n) 2 ⇥(WS(n))

Speedup(n) =
W (n)

W (n)
p + D(n)

=
pW (n)

W (n) + pD(n)

p 2 O
�W (n)

D(n)

�

G. Zachmann 28 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Limitations of Brent's Theorem

§  Brent's theorem is based on the PRAM model

§  That model makes a number of unrealistic assumption:

§ Memory access has zero latency

§ Memory bandwidth is infinite

§  No synchronization among processors (threads) is necessary

§  Arithmetic operations cost unit time

§  With current hardware, rather the opposite is realistic

G. Zachmann 42 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Radix Sort, Based on the Split Operation

§  The split operation: rearrange elements according to a flag

§  Note: split maintains order within each group! (i.e., it is stable)

§  Radix sort (massively parallel):

where split(i,a) rearranges a by moving all keys that have
bit i = 0 to the bottom, all keys that have bit i = 1 to the top
(lowest bit = bit no. 0)

§  Reminder: stability of split is essential!

1 1 1 0 0 0 0 0

0 1 0 0 1 0 0 1

radix_sort(array a, int len):
 for i = 0...n-1: // important: go from low to high bit!
 split(i, a) // split a, based on bit i of keys

Flags.
There could be
payload data, too
(omitted here)

G. Zachmann 43 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

Algorithm for the Split Operation

§  Split's job:

§  Determine new index for each element

§  Then perform the permutation

§  Algorithm (by way of an example):

§  Consider lowest bit of the keys

1.  Compute "0"-scan (exclusive):
fi = # "0"s in (a0, …, ai-1)

2.  Set F = total number of "0"s

3.  If ai = 0 → new pos. d = fi

4.  If ai = 1 → new pos. d = F + (i – fi)

-  Because i – fi = # "1"s to the left of i

100 111 010 110 001 101 001 000

0 1 2 3 4 5 6 7

a:

i:

=

(
fn�1 + 1 an�1 = 0

fn�1 an�1 = 1

0 1 1 2 3 3 3 3 f:

4+(1-1) 4+(4-3) 4+(5-3) 4+(6-3) dfor "1"s:

0 1 2 3 dfor "0"s:

F=4

0 4 1 2 5 6 7 3 d:

4 7 2 6 1 5 1 0

0 1 2 3 4 5 6 7

a:

i:

4 2 6 0 7 1 5 1 a':

G. Zachmann 44 Prefix-Sum Massively Parallel Algorithms 5 June 2013 SS

§  A conceptual algorithm for the "0"-scan:

§  Extract the relevant bit
(conceptually only)

§  Invert the bit

§  Compute regular scan
with +-operation

§  In a real implementation, you would, of course, implement this
as a native "0"-scan routine!

100 111 010 110 001 101 001 000 a:

1 0 1 1 0 0 0 1 a':

0 1 1 2 3 3 3 3 f:

